Object Recognition Using Reflex Fuzzy Min-Max Neural Network with Floating Neurons
نویسندگان
چکیده
This paper proposes an object recognition system that is invariant to rotation, translation and scale and can be trained under partial supervision. The system is divided into two sections namely, feature extraction and recognition sections. Feature extraction section uses proposed rotation, translation and scale invariant features. Recognition section consists of a novel Reflex Fuzzy MinMax Neural Network (RFMN) architecture with “Floating Neurons”. RFMN is capable to learn mixture of labeled and unlabeled data which enables training under partial supervision. Learning under partial supervision is of high importance for the practical implementation of pattern recognition systems, as it may not be always feasible to get a fully labeled dataset for training or cost to label all samples is not affordable. The proposed system is tested on shape data-base available online, Marathi and Bengali digits. Results are compared with “General Fuzzy Min-Max Neural Network” proposed by Gabrys and Bargiela.
منابع مشابه
A General Reflex Fuzzy Min-Max Neural Network
— " A General Reflex Fuzzy Min-Max Neural Network " (GRFMN) is presented. GRFMN is capable to extract the underlying structure of the data by means of supervised, unsupervised and partially supervised learning. Learning under partial supervision is of high importance for the practical implementation of pattern recognition systems, as it may not be always feasible to get a fully labeled dataset ...
متن کاملColor Object Recognition Using General Fuzzy Min Max Neural Network
A hybrid approach based on Fuzzy Logic and neural networks with the combination of the classic Hu & Zernike moments joined with Geodesic descriptors is used to keep the maximum amount of information that are given by the color of the image. These moments are calculated for each color level and geodesic descriptors are applied directly to binary images to get information about the general shape ...
متن کاملSpeech Recognition Using Modified General Fuzzy Min-Max Neural Network
In this paper, we report the results of Marathi (Language spoken in the state of Maharashtra, India) spoken digit recognition using General Fuzzy Min-Max Neural Network (GFMM NN)[1] and Modified General Fuzzy MinMax Neural Network (MGFMM NN), which is obtained by modifying the transfer function of output layer of GFMM NN.
متن کاملPersian Printed Numeral Characters Recognition Using Geometrical Central Moments and Fuzzy Min-Max Neural Network
In this paper, a new proposed system for Persian printed numeral characters recognition with emphasis on representation and recognition stages is introduced. For the first time, in Persian optical character recognition, geometrical central moments as character image descriptor and fuzzy min-max neural network for Persian numeral character recognition has been used. Set of different experiments ...
متن کاملApplication of the Fuzzy Min-max Neural Network Classifier to Problems with Continuous and Discrete Attributes
The fuzzy min-max classiication network constitutes a promisimg pattern recognition approach that is based on hy-berbox fuzzy sets and can be incrementally trained requiring only one pass through the training set. The deenition and operation of the model considers only attributes assuming continuous values. Therefore, the application of the fuzzy min-max network to a problem with continous and ...
متن کامل